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Single and multi-unit recordings in primates have identified spatially
localized neuronal activity correlating with an animal’s behavioral
performance. Due to the invasive nature of these experiments, it
has been difficult to identify such correlates in humans. We report
the first non-invasive neural measurements of perceptual decision
making, via single-trial EEG analysis, that lead to neurometric
functions predictive of psychophysical performance for a face
versus car categorization task. We identified two major discrimi-
nating components. The earliest correlating with psychophysical
performance was consistent with the well-known face-selective
N170. The second component, which was a better match to the
psychometric function, did not occur until at least 130 ms later. As
evidence for faces versus cars decreased, onset of the later, but
not the earlier, component systematically shifted forward in time. In
addition, a choice probability analysis indicated strong correlation
between the neural responses of the later component and our
subjects’ behavioral judgements. These findings demonstrate
a temporal evolution of component activity indicative of an
evidence accumulation process which begins after early visual
perception and has a processing time that depends on the strength
of the evidence.
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Introduction

Identifying neural activity directly responsible for perceptual

decision making is a major challenge for systems and cognitive

neuroscience. A number of investigators have studied the neural

correlates of decision making in awake behaving animals, in

particular primates, where single andmulti-unit recordings have

been analyzed using signal detection theory (Green and Swets,

1966) and subsequently correlated with the animal’s observed

behavior/decisions. For instance, Newsome and colleagues

(Newsome et al., 1989; Britten et al., 1992, 1996) used visual

stimuli consisting of varying amounts of coherent motion and

showed that neurometric functions constructed from the

activity of specific individual and small populations of neurons

were indistinguishable from the animal’s psychometric func-

tions. They also computed choice probabilities and showed that

the neural responses had a small but significant association with

the animal’s decisions. This approach of comparing neurometric

and psychometric functions and considering choice probabili-

ties enables one to directly address the decision making process

since it explicitly relates the variability of the neural activity to

the variability observed in the behavioral response. The tech-

nique has been applied in a variety of perceptual decision

making paradigms, including discrimination of visual objects

such as faces (Keysers et al., 2001) and tactile discrimination

tasks (Hernandez et al., 2000; Romo et al., 2002). The approach,

though powerful, has been limited to animal studies which use

invasive recordings of single-trial neural activities. Yet to be

demonstrated is whether decision making could be studied in

a similar fashion, though under the constraint that single-trial

neural activity be measured non-invasively in humans.

Decision making during face processing has been extensively

studied in both primates and humans, in particular within the

context of face categorization and identification. Human sub-

ject studies using trial-averaged electroencephalography (EEG)

have identified waveforms at specific times (e.g. N170, N200)

that are well-correlated with the presentation of faces com-

pared with nonface objects (Jeffreys, 1996; Halgren et al., 2000;

Liu et al., 2000; Rossion et al., 2003). Recent studies using

magnetoencephalography (MEG) (Liu et al., 2002) have found

earlier trial-averaged activity (M100) which is correlated with

face categorization but not identification of individual faces,

suggesting a two-stage processing strategy in face perception.

However, these experiments do not directly address the de-

tailed temporal aspects of the decision making process during

human face perception since they do not consider single-trial

variability of the activity relative to the variability of the

response.

Keysers et al. (2001), using rapid serial visual presentation

(RSVP), identify activity of individual neurons in macaque

temporal cortex which predict whether the monkey responds

that it saw a face in the stimulus. These investigators attempt to

relate this neural activity to human subject performance by

comparing neurometric functions for single-neurons in ma-

caque with psychometric functions of human subjects’ doing

a similar task. Their comparison, though indirect and qualitative,

indicates that the monkey’s neurometric function has a similar

shape to the human subject’s psychometric function, though

the curves themselves are quantitatively very different. This

approach is problematic, for activities and decisions are not only

being compared across species but also across subjects and

different experimental sessions. Thus the inter-subject and intra-

subject variability in the decision making process cannot be

captured/measured. Rather this would require simultaneous

measurement of the neuronal and psychophysical performance

while the human subject performs the task.

In this paper we used single-trial analysis of the EEG to identify

the cortical correlates of decision making during face percep-

tion in human subjects. We used a machine learning approach

to identify linear spatial weightings of the EEG sensors for

specific temporal windows which optimally discriminate be-

tween target (faces) and non-target (cars) trials during a simple

categorization task. From these discriminating components we
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constructed neurometric curves, as a function of stimulus

evidence (phase coherence) and compared them to subjects’

psychometric functions. We analyzed the temporal character-

istics of those components which were strongly correlated

with psychophysical performance and considered how

changes in their temporal onset was affected by the stimulus

evidence for the decision.

Materials and Methods

Subjects
Six people (three females and three males, age range 21--37 years)

participated in the study. All had normal or corrected to normal vision

and reported no history of neurological problems. Informed consent

was obtained from all participants in accordancewith the guidelines and

approval of the Columbia University Institutional Review Board.

Stimuli
We used a set of 12 face (Max Planck Institute face database) and 12 car

grayscale images (image size 512 3 512 pixels, 8-bits/pixel). Both image

types contained equal numbers of frontal and side views (up to ±45�). All
images were equated for spatial frequency, luminance and contrast.

They all had identical magnitude spectra (average magnitude spectrum

of all images in the database) and their corresponding phase spectra

were manipulated using the weighted mean phase (WMP) (Dakin, 2002)

technique to generate a set of images characterized by their % phase

coherence. With the original phase of an image given by /image, the final

phase /final is computed as follows:

/final =
arctanðS=CÞ C >0
arctanðS=CÞ + p C <0; S > 0
arctanðS=CÞ –p C <0; S < 0

8<
: ð1Þ

where S = w sin(/image) + (1 – w) sin(/noise), C = w cos(/image) + (1 – w)

cos(/noise), and w is in the range [0, 1] (w = 1 indicates full signal or

100% phase coherence, and w = 0 indicates full noise or 0% phase

coherence). /noise is the phase of uniform random noise in the range

[–p; p]. We processed each image to have six different phase coherence

values (20, 25, 30, 35, 40 and 45%). A Dell Precision 530 Workstation

with nVidia Quadro4 900XGL graphics card and E-Prime software

controlled the stimulus display. An LCD projector (InFocus LP130) was

used to project the images through an RF shielded window onto a front

projection screen. Each image subtended 33�x22� of visual angle.

Behavioral Paradigm
Subjects performed a simple categorization task where they had to

discriminate between images of faces and cars. Within a block of trials,

face and car images over a range of phase coherences were presented in

random order. The range of phase coherence levels was chosen to span

psychophysical threshold. All subjects performed nearly perfectly at the

highest phase coherence but performed near chance for the lowest one.

Subjects reported their decision regarding the type of image by pressing

one of two mouse buttons — left for faces and right for cars — using

their right index and middle fingers respectively. A block of trials

consisted of 24 trials of both face and car images at each of six different

phase coherence levels, a total of 144 trials. There were a total of four

blocks in each experiment. At the beginning of a block of trials subjects

fixated at the center of the screen. Images were presented for 30 ms

followed by an inter-stimulus-interval (ISI) which was randomized in the

range of 1500--2000 ms. Subjects were instructed to respond as soon as

they identified the type of image and before the next image was

presented. A schematic representation of the behavioral paradigm is

given in Figure 1. Trials where subjects failed to respond within the ISI

were marked as no-choice trials and were discarded from further

analysis.

Data Acquisition
EEG data was acquired simultaneously in an electrostatically shielded

room (ETS-Lindgren, Glendale Heights, IL) using a Sensorium EPA-6

Electrophysiological Amplifier (Charlotte, VT) from 60 Ag/AgCl scalp

electrodes and from three periocular electrodes placed below the left

eye and at the left and right outer canthi. All channels were referenced

to the left mastoid with input impedance <15kX and chin ground. Data

were sampled at 1000 Hz with an analog pass band of 0.01--300 Hz using

12 dB/octave high pass and eighth-order Elliptic low pass filters.

Subsequently, a software based 0.5 Hz high pass filter was used to

remove DC drifts and 60 and 120 Hz (harmonic) notch filters were

applied to minimize line noise artifacts. These filters were designed to

be linear-phase to minimize delay distortions. Motor response and

stimulus events recorded on separate channels were delayed to match

latencies introduced by digitally filtering the EEG.

Movement Artifact Removal
Prior to the main experiment, subjects completed an eye muscle

calibration experiment during which they were instructed to blink

repeatedly upon the appearance of a white-on-black fixation cross and

then to make several horizontal and vertical saccades according to the

position of the fixation cross subtending 1� 3 1� of visual field.

Horizontal saccades subtended 33� and vertical saccades subtended

22�. The timing of these visual cues was recorded with EEG. This

enabled us to determine linear components associated with eye blinks

and saccades (using principal component analysis) that were sub-

sequently projected out of the EEG recorded during the main

experiment (Parra et al., 2003). Trials with strong eye movement or

other movement artifacts were manually removed by inspection. There

were at least 40 artifact-free trials for any given condition (i.e. at least 80

trials for both sets of face and car trials at each phase coherence level).

Data Analysis
We used a single-trial analysis of the EEG to discriminate between face

versus car trials at each phase coherence level. Logistic regression was

used to find an optimal basis for discriminating between two conditions

over a specific temporal window (Parra et al., 2002). Specifically, we

defined a training window starting at a poststimulus onset time s, with

a duration of d, and used logistic regression to estimate a spatial

weighting vector ws,d which maximally discriminates between sensor

array signals X for two conditions (e.g. target versus non-target trials):

y = w
T

s;dX ð2Þ

where X is an N 3 Tmatrix (N sensors and T time samples). The result is

a ‘discriminating component’ y which is specific to activity correlated

with condition 1 (faces) while minimizing activity correlated with both

task conditions such as early visual processing. We use the term

‘component’ instead of ‘source’ to make it clear that this is a projection

of all the activity correlated with the underlying source. For our

experiments the duration of the training window (d) was 60 ms and

the window onset time (s) was varied across time. We used the re-

weighted least squares algorithm to learn the optimal discriminating

spatial weighting vector ws,d (Jordan and Jacobs, 1994). In order to

provide a functional neuroanatomical interpretation of the resultant

discriminating activity, and given the linearity of our model, we

computed the electrical coupling coefficients for the linear model,

a =
Xy

y
T
y
: ð3Þ

Equation 3 describes the electrical coupling a of the discriminating

component y that explains most of the activity X. Strong coupling

indicates low attenuation of the component and can be visualized as the

intensity of the ‘sensor projections’ a. a can also be seen as a forward

model of the discriminating component activity (Parra et al., 2002).

At a given coherence level we also constructed discriminant

component maps. We aligned our trials to the onset of visual stimulation

as shown in Figure 2a (black vertical line) and sorted them by reaction

time (sigmoidal curves). Each row of the discriminant component map

represents a single trial across time. Discriminant components are

represented by the y vectors. To construct this map we chose a training

window, indicated by the white vertical bars (for this example starting
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at 180 ms post-stimulus), during which we trained our linear discrim-

inator to estimate the weighting vector w for all of our sensors in X,
such that y is maximally discriminating between face and car trials.

Once the w vector has been estimated using data derived only from the

training window, we applied w to the data across all trials and all time.

The resultant discriminant component map is shown in Figure 2a. Red

represents positive and blue negative activity. For this example the

resultant discriminating component appears ~180 ms after the onset of

visual stimulation and it is stimulus-locked. Response-locked compo-

nents are expected to have a sigmoidal profile similar to the subject’s

actual response times.

Training the discriminator over several temporal windows allowed us

to visualize the temporal evolution of the discriminating component

activity. We used a coarse-to-fine approach to identify the two most

discriminating time windows at every phase coherence level. Initially

we trained the discriminator while sliding our training window in non-

overlapping segments of 30 ms from the onset of visual stimulation to

the earliest response time. We subsequently re-trained the discriminator

by sliding the window in finer steps (10 ms) only around the two most

discriminating regions as identified by the coarser search.

Taking advantage of the linearity of our model, we subsequently used

the foward model to project this discriminating activity back to the

sensors. The resultant scalp projections a are shown in Figure 2b and are

used for interpreting the neuroanatomical significance of the resultant

discriminating component.

We quantified the performance of the linear discriminator by the area

under the receiver operator characteristic (ROC) curve, referred to as

Az, with a leave-one-out approach (Duda et al., 2001). We used the ROC

Az metric to characterize the discrimination performance while sliding

our training window from stimulus onset to response time (varying s).
Finally in order to assess the significance of the resultant discriminating

component we used a bootstrapping technique to compute an Az value

Figure 1. Schematic representation of the behavioral paradigm. (a) Within a block of trials subjects were instructed to fixate on the center of the screen and were subsequently
presented, in random order, with a series of different face and car images at one of the six phase coherence levels shown in (b). Each image was presented for 30 ms, followed by
an inter-stimulus interval lasting between 1500 and 2000 ms, during which subjects were required to discriminate among the two types of images and respond by pressing
a button. A block of trials was completed once all face and car images at all six phase coherence levels have been presented. (b) A sample face image at six different phase
coherence levels (20, 25, 30, 35, 40, 45%).

Figure 2. Summary of our single-trial EEG analysis. (a) Example of a discriminant
component map resulted from our single-trial linear discrimination analysis. (b) Dorsal
view of sensor projections a and component significance as quantified by an ROC
analysis (see text for details).
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leading to a significance level of P = 0.01. Specifically we computed

a significance level for Az by performing the leave-one-out test after

randomizing the truth labels of our face and car trials. We repeated this

randomization process 100 times to produce an Az randomization

distribution and compute the Az leading to a significance level of P = 0.01
shown in Figure 2b by the dotted red line.

Psychometric and Neurometric Functions
We constructed psychometric curves to characterize our subjects

behavioral performance. The proportion of correct choices was plotted

against the percentage of phase coherence of our stimuli. To charac-

terize neuronal performance, in a manner comparable to the description

of psychophysical sensitivity as captured in the psychometric function,

we constructed an EEG-based neurometric function by displaying the Az

values (Green and Swets, 1966) obtained during single-trial discrimina-

tion of face versus car trials at each phase coherence level. We used

a maximum-likelihood method (Watson, 1979) to compute the best-

fitting cumulative Weibull distribution (Quick, 1974) for each data set:

p = 1 – 0:5e
– ðc=aÞb ð4Þ

where p is the proportion of correct choices computed as a function of

the phase coherence, c, of our stimuli. The fitted parameters a and b are

the phase coherence supporting threshold performance (82% correct)

and the slope of the curve respectively.

Choice Probabilities
We computed choice probabilities at selected phase coherence levels

for all our subjects. We labeled all trials based on the type of response/

choice rather than the type of stimulus (i.e. all face responses -- correct

face and incorrect car trials -- versus all car responses -- correct car and

incorrect face trials). We then repeated the ROC analysis described in

Data Analysis and classified between ‘face’ and ‘car’ choice trials such

that the new set of Az values now represented choice probabilities.

Statistical Tests
We used a conventional v2 test to evaluate the goodness of fit to our

data. Using the criterion (v2, P < 0.05), none of the fits of all the subjects

in our main data set were rejected. In order to quantify the degree of

similarity between the psychometric and neurometric functions we fit

the best singleWeibull function jointly to the two data sets in addition to

the individual fits. The likelihoods (L) obtained from these two

conditions were transformed by:

k = – 2ln
Lðdata j jointed curveÞ

Lðdata j individual curvesÞ ð5Þ

so that k is distributed as v2 with two degrees of freedom (Hoel et al.,

1971). If k does not exceed the criterion value (for P = 0.05), we

concluded that a single function fits the two data sets as well as two

separate functions.

Results

EEG-derived Neurometric Functions

We measured the psychophysical performance of six subjects

to a face versus car categorization task (Fig. 1a) while

simultaneously recording neuronal activity using a high-density

EEG electrode array. We changed the stimulus evidence by

manipulating the phase coherence of our images (Fig. 1b).

Within a block of trials, face and car images over a range of

phase coherences were presented in random order. All subjects

performed nearly perfect at the highest phase coherence but

performed near chance at the lowest coherence.

We compared the EEG activity obtained for the two types of

images at each phase coherence level on a single-trial basis in

order to capture the response variability which is normally

concealed by trial averaging. Using a linear discriminator which

integrates EEG over space rather than across trials, we identified

components that maximally discriminated between the two

experimental conditions. We used ROC analysis to quantify the

discriminator’s performance. Furthermore, taking advantage of

the linearity of our model, we computed sensor projections of

the discriminating component activity. These scalp projections

can provide a forward model for interpreting the neuroanatom-

ical significance of the resultant discriminating components.

At each phase coherence level we identified the two most

discriminating components in the interval between the onset of

the visual stimulation and the earliest reaction time. In order to

characterize the neuronal performance at these two times, in

a manner compatible with the description of the psychophys-

ical sensitivity as captured by the psychometric functions

(Green and Swets, 1966), we constructed neurometric func-

tions by plotting the area under the ROC curves (Az values)

against the corresponding phase coherence levels and fitting

the data with Weibull functions (Quick, 1974). We trained our

linear discriminator at these two temporal windows separately

and combined. When the discriminator was trained with data

integrated across both time windows we generally observed, for

the discriminator, improved performance and hence higher Az

values. Figure 3 shows comparisons of the psychometric and

neurometric functions for all subjects in our dataset.

In order to quantify the degree of similarity between the

psychometric and neurometric functions and demonstrate that

our EEG-derived neurometric functions can account for

psychophysical performance, we fit the best single Weibull

function jointly to the two data sets in addition to the individual

fits. We subsequently used a likelihood-ratio test (Hoel et al.,

1971) which showed that for all our subjects a single function

can fit the behavioral and neuronal data sets as well as the two

separate functions. We concluded that these neurometric

functions can be used to quantify the relationship between

the neuronal signals and behavior by isolating the components

that are associated with the perceptual discrimination.

Early and Late Face-selective Responses

In the time interval between the stimulus onset and the earliest

response time we identified two face-selective components that

were maximally discriminating between face and car trials. To

visualize the temporal evolution of these components we

constructed discriminant component maps. Figure 4 summa-

rizes the complete results for one subject. The early component

was consistent with the well-known N170 and its temporal

onset appeared to be consistent across all subjects. The late

component, which was of opposite sign, appeared on average

130ms after the first at the highest coherence level. Its temporal

onset varied across subjects in the range 300--450 ms from

stimulus onset across all coherence levels.

As can be seen by the single-trial component projections

(Fig. 4) from discrimination of stimulus-locked face versus car

trials, both face-selective responses appeared to be more

correlated with the onset of visual stimulation (black vertical

line) rather than the response (sigmoidal curves). To verify this

point with respect to possible bias in our stimulus locked

analysis, we reanalyzed the results response locked and found

the components remained strongly stimulus locked (not

shown). This observation indicated that the discriminating

activity is not directly predictive of reaction time; rather, it
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Figure 3. Comparison of behavioral and neuronal performance. (a--f) Psychometric (red) and neurometric (black) functions for all six subjects. The abscissas represent the
percentage of phase coherence of our stimuli and the ordinate indicates the subject’s performance as proportion correct. We fit both data with separate Weibull functions and
compute the corresponding threshold (a) and slope (b) parameters. For all six subjects psychophysical and neuronal data were statistically indistinguishable as assessed by
a likelihood ratio test after we fit the best single Weibull function jointly to the two data sets. The P-value in each panel represents the output of this test. A P-value greater than 0.05
indicates that a single function fits the two data sets as well as the two separate functions. The dotted gray lines connect the Az values computed for each of the two training
windows separately (earlier window, open circles; later window, open squares).

Figure 4. Discriminant component activity that shows the difference between face versus car trials at each coherence level for one subject for (a) the early (N170) and (b) the late
(~300--400 ms) window. Red represents positive and blue negative activity. All trials were aligned to the onset of visual stimulation, as indicated by the vertical black line at time
0 ms, and sorted by response time. The black and magenta sigmoidal curves represent the subject’s response times for face and car trials respectively. We subsequently applied
our linear discrimination algorithm to construct discriminant component maps. Each row of these maps represents the output of the linear discriminator for a single trial, using a 60
ms training window (vertical white lines) with onset times specified at the top of each panel. The representation of the topology of the discriminating activity is shown by the scalp
plots to the right (dorsal view). Red represents positive correlation of the sensor readings to the extracted activity and blue negative correlation. The Az values for each time window
at each coherence level are represented by the bar graphs. The significance of the difference activity is represented by the red line (P 5 0.01). For this subject the discriminant
component activity was statistically significant down to 30% phase coherence for both time windows.
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appears to be related to the stimuli reaching a perceptual level

of processing (Super et al., 2001).

In addition we observed that the late face-selective compo-

nent resulted in a better match to the psychophysical data as

shown in Figure 3. In fact, for four of our six subjects (Fig. 3a--d)

using the Az values obtained only from the late training window

to construct our neurometric function was sufficient to show

that the psychometric and neurometric functions were statis-

tically indistinguishable. Interestingly this was never true when

neurometric functions were derived solely based on analysis

from the early face-selective N170 component.

Evidence Changes Onset of Late Component

We investigated the relationship between the temporal onset of

the early and late face-selective responses and task difficulty.

The most discriminating time window at each phase coherence

level for each one of the two face-selective temporal compo-

nents appears on the top of each set of projections in Figure 4.

We used these times to study the extent to which these face-

selective components systematically shifted in time. We used

a bootstrapping method, to identify all significantly discriminat-

ing components (P < 0.01; red dotted line). Only times from

these statistically significant components were used for this

analysis. We regressed a line through these time points for each

one of the face-selective components and computed their

corresponding slopes (Fig. 5a). We found that for the early

component (N170) there was no significant shift in time, as the

slopes did not differ significantly from zero (two-tailed t-test,

P > 0.45). On the other hand, the optimal onset of the late face-

selective component had a systematic forward shift in time as

the task became more difficult and the subjects took longer to

respond. The slopes for the late component were statistically

less than zero (left-tailed t-test, P < 0.007) and also statistically

more negative from the slopes of the earlier component

(right-tailed, paired t-test, P < 0.005).

These findings seem to suggest an early component related to

bottom-up processing of the stimulus and a late component

responsible for the evaluation of the evidence (Shadlen and

Newsome, 1999; Keysers and Perrett, 2002), occurring later for

more ambiguous stimuli. In addition, the timing of the second

component (300--450 ms post-stimulus) is consistent with pre-

vious findings suggesting recurrent processing of the stimulus/

evidence (Super et al., 2001; VanRullen and Koch, 2003),

with an average reverberation time of 130 ms. Such re-

verberatory activity is likely to reflect the integration of

information that underlies perception considering that re-

current/feedback connections are shown to mediate pro-

cesses such as perceptual organization, attention and visual

awareness (Lamme et al., 1998; Hupe et al., 1998; Super

et al., 2001).

Association between Neuronal Responses and
Behavioral Decisions

To address the possibility that the neural responses associated

with the discriminating components are correlated with our

subjects’ choices, we employed a method based on signal

detection theory, analogous to the ROC analysis used earlier,

to compute choice probabilities as in Britten et al. (1996).

Unlike traditional uses of signal detection theory, however,

which establish the relationship between the stimulus and

neural responses, this alternative formulation quantifies a re-

lationship between neuronal activity and a subject’s choices/

decisions. A choice probability value of 0.5 represents chance

performance and a value of 1.0 represents perfect association

between neuronal and behavioral responses. In order for the

choice probability metric to be meaningful, neural responses

from stimuli near threshold are to be used (so that the subjects

make a useful number of errors on the psychophysical task).

We pooled data across two coherence levels (30 and 35%)

that were near threshold where subjects made both ‘face’ and

Figure 5. (a) Results showing delayed onset of the second window as a function of coherence level. No systematic shifts are seen for the early window. Plots (raw data and linear
regression) of onset times for early and latewindows for all six subjects are shown. Only significant components are used in the regression analysis. (b) Average scalp topologies across
subjects at each phase coherence level for both the early (left) and late (right) components. Each subject’s scalp projections were normalized prior to computing the grand averages.
Red represents positive correlation between the sensors and the discriminating components whereas blue represents negative correlation.
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‘car’ choices in response to any particular stimulus, and

computed a choice probability value for every subject. We

computed three sets of choice probabilities using neuronal data

from (i) the early component, (ii) the late component and

(iii) the early and late components combined. The results

are summarized in Table 1. To assess the significance of these

choice probabilities we employed a bootstrap technique where

we randomly permuted the trial labels 500 times and computed

choice probability distributions for every subject. This permu-

tation test ensured that the association between the neuronal

and behavioral responses was abolished, while the distributions

of neuronal and behavioral judgements remained untouched.

We then checked if the observed choice probability values were

outside the 95% confidence intervals of these distributions, in

which case we concluded that they were statistically significant.

Only three out of six subjects had a choice probability

significantly greater than chance when data from only the

earlier component were considered. Interestingly, however, the

observed choice probabilities for the late component were

shown to be statistically significant for all six subjects. These

results clearly demonstrate that the neuronal responses, espe-

cially of the later component, for all our subjects had a signif-

icant positive association with their behavioral choices. Taken

together, this finding and the systematic forward shift of the

second component as evidence decreased suggest that the

second component may be associated with the actual decision

making process, or at the very least reflect an intermediate stage

of perceptual processing that is situated between purely

sensory and decision stages (Super et al., 2001).

Spatial Distribution of Activity and the Importance of
Spatial Integration

For both the early (N170) and late face-selective responses, at

each phase coherence level, we constructed scalp maps of the

discriminating components, and the results for one subject are

shown in Figure 4a,b. The Az values which describe the

discriminator’s performance at each phase coherence level

are also shown. For the subject shown in Figure 4, the

discriminant activity was statistically significant down to

a 30% phase coherence for both temporally distributed compo-

nents as assessed by our bootstrapping technique (P < 0.01; red

dotted line).

The average scalp projections from significantly discriminat-

ing components for the early face-selective component (Fig. 5b)

indicated significant differences between face versus car trials

at occipito-temporal electrode sites in the left and right hemi-

spheres (negative correlation) and a number of centro-frontal

sites (positive correlation). These results are consistent with

functional neuroimaging studies (Kanwisher et al., 1996, 1997;

Puce et al., 1996; Hasson et al., 2002) and several ERP/MEG

studies (Botzel et al., 1995; Bentin et al., 1996; Halgren et al.,

2000; Liu et al., 2000; Rossion et al., 2003), where face-sensitive

activations are always found relative to objects in occipito-

temporal cortex (mainly the inferior occipital and fusiform gyri)

bilaterally. Some studies have also identified face-selective

responses (Jeffreys, 1989, 1996) and target/nontarget responses

(VanRullen and Thorpe, 2001), in addition to the occipito-

temporal sites, in centro-frontal locations. These are also

consistent with recent findings which identified active regions

in the dorsal lateral prefrontal cortex (DLPFC) which are

thought to be associated with decision making during a face

versus house categorization task (Heekeren et al., 2004). The

late face-selective component also demonstrated a very similar

activation pattern to the early/N170 component (Fig. 5b),

though with opposite sign. This was an interesting observation,

though only a simultaneous fMRI study could determine de-

finitively which cortical systems contributed to this component.

To emphasize the importance of spatial integration for

identifying discriminating components predictive of the psy-

chophysical sensitivity of our subjects, we used an alternative

approach to computing a neurometric function. Instead of using

our spatial integration algorithm, which weights the activity

across all EEG sensors, we repeated the discrimination using

only the activity from a single electrode. We chose electrode

PO8, over the right face-selective activation area, where the

greatest difference in the EEG signal between face and car trials

was identified. The neurometric function that we constructed

with this approach was not nearly as predictive of the

psychophysical performance as the neurometric function

which was computed using our spatial integration technique.

Figure 6 illustrates this point.

Motor Activity not Predictive of
Psychophysical Performance

In some cases we observed small, though significant, differences

in reaction time for face versus car responses (e.g. see the

sigmoidal reaction time curves in Fig. 4). To test whether the

discriminating activity we identified was due to a difference in

this reaction time, for example a component associated with

motor activity, we generated neurometric functions using

temporal windows near the reaction time. Specifically, for

each subject we used a training window around the median

reaction time at each phase coherence level. A typical curve

derived during this period is also shown in Figure 6. It is clear

from this plot that discriminating components extracted near

reaction times (e.g. components representative of preparatory

motor, motor or somatosensory activity) were not predictive

of the psychophysical sensitivity of our subjects. Additional

evidence that the two components, specifically the second

component, are not reflective of response selection/motor

programming can be seen by considering the change in the

strength of the component as a function of coherence level.

If the component were reflective of response selection, then

one would expect no difference in the strength of the

component at different coherence levels. Finally, the second

component is strongly stimulus-locked, providing further evi-

dence that it is not reflective of response selection/motor

programming. We can conclude that the earlier and late com-

ponent activities are not artifacts of reaction time differences

but are in fact closely linked to the perception and decision

making processes respectively.

Table 1
Choice probabilities computed for all six subjects using neuronal data from (i) the early

component, (ii) the late component and (iii) the early and late components combined

S1 S2 S3 S4 S5 S6

Early window 0.58 0.65* 0.64* 0.52 0.73** 0.61
Late window 0.74** 0.63** 0.65** 0.76** 0.81** 0.61*
Early þ late windows 0.69** 0.68** 0.69** 0.74** 0.82** 0.64**

*Statistically significant values as identified by a permutation test (values outside the

95% confidence interval).

**Choice probabilities represent values outside the 99% confidence interval.
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Comparison to ERP Component Analysis

To reinforce the main findings of our study, we also present

a brief summary of a traditional ERP analysis on our data. ERPs,

though the result of trial averaging which compromises single-

trial variability, are easier to interpret and can provide useful

insights about the time course of the undelying visual process-

ing. In our task we found strong differential activity (i.e. faces --

cars) at virtually all electrode locations which emphasizes the

magnitude of the effect. Figure 7 summarizes these results.

Specifically, we computed difference ERP waveforms at six

centro-frontal locations as well as at six occipito-parietal sites

for one subject at the highest coherence level (i.e. 45%). Both

waveforms indicate significant differential responses that peak

at ~170 ms (early component) and 330 ms (late component)

after the onset of visual stimulation. Overlaid are the two 60 ms

training windows used to achieve maximum single-trial dis-

crimination for this particular subject (early window, light gray;

late window, dark gray).

In addition to thesemaximally discriminating components, we

observed an even earlier component (~100 ms), the magnitude

of whichwas not as strong as the other two. The presence of this

component and its spatial distribution (as indicated by the

corresponding scalp maps) are consistent with what was

reported by Liu et al. (2002). In all cases, however, the Az values

we computed for this component were not sufficiently high to

account for the psychophysical performance of our subjects.

Scalp maps for each component, constructed based on the

difference ERPs and our sensor projections a, are also shown in

Figure 7. Red presents positive correlation between the sensors

and the underlying discriminating component and blue repre-

sents negative correlation. Note that the sign of the differential

ERP activity at the different electrode locations is consistent

with the scalp topology. For instance, there is a negative

correlation between the N170 component and the occipitopar-

ietal sensors and positive correlations with centrofrontal

locations. The signs flip for the later component.

Even though ERP analysis can identify both the early and later

components, it could not unequivocally associate, especially the

later component, to our subjects’ decision making process.

Single-trial analysis, on the other hand, provides a more rigor-

ous, and direct, method to compare neuronal responses to

psychophysical performance (which is not obtainable using

simple correlation of sorted ERP derived amplitudes) and

therefore directly addresses the decision making process.

Discussion

Our results demonstrate that neural correlates of perceptual

decision making can be identified using high-spatial density EEG

and that the corresponding component activities are temporally

distributed. Clearly important to identification of these neural

correlates is the spatial, and to a lesser extent the temporal

integration of the EEG component activities. This approach is

complementary to approaches using single and multi-unit

recordings since it sacrifices spatial and some temporal resolu-

tion (local field potentials versus spike-trains) for a more

spatially distributed view of the neural activity during decision

making. The fact that we were able to identify neural correlates

of perceptual decision making using relatively poor spatial

resolution of EEG suggests that these neural correlates repre-

sent strong activities of neural populations and not the activity

of a small number of neurons.

Figure 7. Difference ERP waveforms between face and car images for one subject at
the 45% coherence level. The black waveform represents a grand average across six
centro-frontal electrode sites and the blue across six occipito-parietal locations.
Overlaid are the two temporal windows used to train the linear discriminator to achieve
maximum discrimination performance (early window, light gray; late window, dark
gray). Differential activity was seen at 100, 170 and 330 ms post-stimulus, though only
the latter two yielded significant discrimination performance that could account for this
subject’s behavioral performance. On top of each component we display scalp maps
constructed using the difference ERPs and our sensor projections a.

20 25 30 35 40 45

0.5

0.6

0.7

0.8

0.9

1

% Phase Coherence

P
ro

po
rt

io
n 

C
or

re
ct

1µV

N170

PO8

*

****
*

Figure 6. Comparison of a psychometric function (gray, solid circles) with neuro-
metric functions constructed in three different ways: (i) the actual neurometric
function (black, solid circles) constructed using our spatial integration algorithm (which
weights all electrodes) and after integrating data from both the early and late
windows. (ii) A neurometric function (gray triangles) constructed across both the early
and late windows but for only a single electrode. We used electrode PO8 for single-
electrode discrimination, because it showed the most significant difference between
face (black) and car (gray) trials as indicated by the average ERP (see inset). (iii) A
neurometric function (gray asterisks) constructed using the spatial integration
algorithm (all electrodes) during a time window around this subject’s median response
time.
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It is interesting to consider the temporal characteristics of

the discriminating components we identified relative to models

of evidence accumulation in decision making (Kim and Shadlen,

1999; Shadlen and Newsome, 2001; Mazurek et al., 2003).

Unlike studies which use dynamic stimuli, such as moving

random dot sequences, where evidence (via analysis of spatio-

temporal correlation structure) can accumulate across time,

our stimuli are static images with no (or little) spatiotemporal

correlation from one to the next. Thus, the temporal nature of

our neural correlates is directly related to the underlying nature

of the internal processing for static object recognition.

Previous work using trial-averaged ERPs has attempted to

identify the timing and activity of early and late components in

object recognition. Several studies have claimed a component at

150 ms poststimulus representative of the speed of visual

processing (Thorpe et al., 1996) and which is correlated with

subject behavior (VanRullen and Thorpe, 2001). Other studies

have claimed that a second, later component (~300ms) is in fact

more directly correlated with the recognition process, with the

earlier component corresponding to low-level feature discrim-

ination (Johnson and Olshausen, 2003). Our findings provide

additional evidence that the later component is more closely

linked to a recognition event/decision, while also providing

evidence for a cortical processing strategy that enables a trade-

off between processing time and accuracy. Assuming a fast feed-

forward recognition process within 150 ms of stimulus onset,

the early component appears to represent a quick evaluation of

the evidence which, while less accurate, could enable a faster

response.

Recent work using fMRI has identified, for a similar catego-

rization task, a region in the posterior portion of the DLPFC

yielding a blood-oxygen-level-dependent (BOLD) signal that

correlated with a difference signal between the two categories

(jface -- housej) and subsequently with subject performance

(Heekeren et al., 2004). Correlation of performance with face-

selective or house-selective regions in ventral temporal cortex

was lower, leading to the conclusion that a strong neural

correlate of perceptual decision making is localized to DLPFC

and is essentially characterized by feed-forward processing.

In all cases correlation was rather low and was done for the

average BOLD signal.

Our results complement this study by characterizing the

temporal evolution of component activities that are correlates

of perceptual decision making. In addition, our approach

precisely quantifies the relationship between the neural signal

and behavior through the comparison of psychometric and

neurometric functions. The construction of neurometric func-

tions was enabled by our single-trial EEG analysis methods. We

saw component activity predictive of decision making and

consistent with signaling between occipito-temporal and fron-

tal networks. Unlike fMRI, however, EEG does not have

sufficient spatial resolution to precisely identify the cortical

regions responsible for these components. Simultaneous meth-

ods for acquiring EEG and fMRI may provide a better picture of

these spatio-temporal network dynamics indicative of cortical

processing underlying perceptual decision making.
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